skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Golomb, Jacob"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Since the first direct detection of gravitational waves by the LIGO–Virgo collaboration in 2015 (B. P. Abbott et al., 2016), the size of the gravitational-wave transient catalog has grown to nearly 100 events (R. Abbott et al., 2023), with the ongoing fourth observing run more than doubling the total number. Extracting astrophysical or cosmological information from these observations is a hierarchical Bayesian inference problem. GWPopulation is designed to provide simple-to-use, robust, and extensible tools for hierarchical inference in gravitational-wave astronomy or cosmology. It has been widely adopted for gravitational-wave astronomy, including producing flagship results for the LIGO-Virgo-KAGRA collaborations (Abac et al., 2024; R. Abbott et al., 2023). While designed to work with observations of compact binary coalescences, GWPopulation may be available to a wider range of hierarchical Bayesian inference problems. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Neutron star properties depend on both nuclear physics and astrophysical processes, and thus observations of neutron stars offer constraints on both large-scale astrophysics and the behavior of cold, dense matter. In this study, we use astronomical data to jointly infer the universal equation of state of dense matter along with two distinct astrophysical populations: Galactic neutron stars observed electromagnetically and merging neutron stars in binaries observed with gravitational waves. We place constraints on neutron star properties and quantify the extent to which they are attributable to macrophysics or microphysics. We confirm previous results indicating that the Galactic and merging neutron stars have distinct mass distributions. The inferred maximum mass of both Galactic neutron stars, 𝑀pop,EM=2.0⁢5+0.11−0.06⁢𝑀⊙ (median and 90% symmetric credible interval), and merging neutron star binaries, 𝑀pop,GW =1.8⁢5+0.39−0.16⁢𝑀⊙, are consistent with the maximum mass of nonrotating neutron stars set by nuclear physics, 𝑀TOV =2.2⁢8+0.41−0.21⁢𝑀⊙. The radius of a 1.4⁢𝑀⊙ neutron star is 12.2+0.8−0.9  km, consistent with, though ∼20% tighter than, previous results using an identical equation of state model. Even though observed Galactic and merging neutron stars originate from populations with distinct properties, there is currently no evidence that astrophysical processes cannot produce neutron stars up to the maximum value imposed by nuclear physics. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. The LIGO-Virgo-KAGRA collaboration has announced the detection to date of almost 100 binary black holes that have been used in several studies to infer the features of the underlying binary black hole population. From these objects it is possible to predict the overall gravitational-wave (GW) fractional energy density contributed by black holes throughout the Universe, and thus estimate the gravitational-wave background (GWB) spectrum emitted in the current GW detector band. These predictions are fundamental in our forecasts for background detection and characterisation, with both present and future instruments. The uncertainties in the inferred population strongly impact the predicted energy spectrum, and in this paper we present a new flexible method to quickly calculate the energy spectrum for varying black hole population features, such as the mass spectrum and redshift distribution. We have implemented this method in an open-access package,popstock, and extensively tested its capabilities. Usingpopstock, we investigated how uncertainties in these distributions impact our detection capabilities, and present several caveats for background estimation. In particular, we find that the standard assumption that the background signal follows a two-thirds power law at low frequencies is both waveform and mass-model dependent, and that the power-law signal is likely shallower than previously modelled, given the current waveform and population knowledge. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  4. Abstract Gravitational-wave observations of binary black holes have revealed unexpected structure in the black hole mass distribution. Previous studies employ physically motivated phenomenological models and infer the parameters that control the features of the mass distribution that are allowed in their model, associating the constraints on those parameters with their physical motivations a posteriori. In this work, we take an alternative approach in which we introduce a model parameterizing the underlying stellar and core-collapse physics and obtaining the remnant black hole distribution as a derived by-product. In doing so, we constrain the stellar physics necessary to explain the astrophysical distribution of black hole properties under a given model. We apply this to the mapping between initial mass and remnant black hole mass, accounting for mass-dependent mass loss using a simple parameterized description. Allowing the parameters of the initial mass–remnant mass relationship to evolve with redshift permits correlated and physically reasonable changes to features in the mass function. We find that the current data are consistent with no redshift evolution in the core–remnant mass relationship, but place only weak constraints on the change of these parameters. This procedure can be applied to modeling any physical process underlying the astrophysical distribution. We illustrate this by applying our model to the pulsational pair instability supernova (PPISN) process, previously proposed as an explanation for the observed excess of black holes at ∼35M. Placing constraints on the reaction rates necessary to explain the PPISN parameters, we concur with previous results in the literature that the peak observed at ∼35Mis unlikely to be a signature from the PPISN process as presently understood. 
    more » « less
  5. ABSTRACT Observations of gravitational waves emitted by merging compact binaries have provided tantalizing hints about stellar astrophysics, cosmology, and fundamental physics. However, the physical parameters describing the systems (mass, spin, distance) used to extract these inferences about the Universe are subject to large uncertainties. The most widely used method of performing these analyses requires performing many Monte Carlo integrals to marginalize over the uncertainty in the properties of the individual binaries and the survey selection bias. These Monte Carlo integrals are subject to fundamental statistical uncertainties. Previous treatments of this statistical uncertainty have focused on ensuring that the precision of the inferred inference is unaffected; however, these works have neglected the question of whether sufficient accuracy can also be achieved. In this work, we provide a practical exploration of the impact of uncertainty in our analyses and provide a suggested framework for verifying that astrophysical inferences made with the gravitational-wave transient catalogue are accurate. Applying our framework to models used by the LIGO–Virgo–KAGRA collaboration and in the wider literature, we find that Monte Carlo uncertainty in estimating the survey selection bias is the limiting factor in our ability to probe narrow population models and this will rapidly grow more problematic as the size of the observed population increases. 
    more » « less